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ABSTRACT 
 

Two recent developments in the field of formal languages are Parsing Expression Grammar (PEG) and packrat 

parsing. The PEG formalism is similar to BNF, but defines syntax in terms of recognizing strings, rather than 

constructing them. It is, in fact, precise specification of a backtracking recursive-descent parser. Packrat parsing is 

a general method to handle backtracking in recursive descent parsers. It ensures linear working time, at a huge 

memory cost. This paper begins with discussion of PEG and packrat parsing introduced by Bryan Ford Followed 

by various approaches over improvement of packrat parsing to reduce the memory requirement. This paper also 

describes the approaches to handle the left-recursion problem for PEG. The described Approaches handle the 

direct and indirect left-recursion problem for PEG. The paper concludes with the application of packrat parsing 

and throws a light on future scope in packrat parsing. 
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I. INTRODUCTION 

 

Parsing is the act of discovering the structure of text 

with respect to a particular grammar and parser is a 

program to facilitate this parsing process.  In order to 

create a parser for a particular language, or even just to 

reason formally about what kinds of strings are 

meaningful or well-formed in that language, we must 

have a way of expressing and understanding the 

language's syntactic structure. For this purpose we 

commonly use a grammar, which is a concise 

representation of the structure of one language, 

expressed in another (ideally very small and simple) 

language. Being able to express the syntactic structure of 

a language concisely with a grammar is especially 

important for programming languages and other 

languages expressly designed for precision and machine-

readability, because grammars can be used to reason 

about the properties of a language mathematically or 

with the help of mechanical tools. 

 

The most common type of grammar in use today is the 

context-free grammar (CFG), typically expressed in the 

ubiquitous Backus-Naur Form (BNF). A context-free 

grammar essentially specifies a set of mutually recursive 

rules that describe how strings in the described language 

may be written. Each rule or production in a CFG 

specifies one way in which a syntactic variable or 

nonterminal can be expanded into a string. Bottom up 

parsing recognizes the smallest constructs first by 

applying productions to group tokens, then grouping 

those constructs into larger constructs and top down 

does in reverse way. Parsing algorithms such as LR (k) 

and LL (k) parsing were developed alongside the first 

generation of high level programming languages to 

parse subsets of the full class of CFGs. By limiting the 

class of parseable languages, such algorithms are both 

time and space efficient, considerations that were of 

huge practical importance given the performance 

limitations of hardware available at the time. 

 

Another method of expressing syntax formally is 

through a set of rules describing how the strings in a 

language are to be read rather than written. This 

approach is called recursive descent parsing. Recursive-

descent parsers have been around for a while. Already in 

1961, Lucas [16] suggested the use of recursive 

procedures that reflect the syntax of the language being 

parsed. His design did not allow backtracking; an 

explicit assumption about the syntax was identical to 
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what later became known as LL (1). The great advantage 

of recursive-descent parsers is transparency: the code 

closely reflects the grammar, which makes it easy to 

maintain and modify. However, manipulating the 

grammar to force it into the LL (1) mold can make the 

grammar itself unreadable. The use of backtracking 

removes the LL (1) restriction. Complete backtracking, 

meaning an exhaustive search of all alternatives, may 

require an exponential time. A reasonable compromise is 

limited backtracking, also called "fast-back" in [17]. In 

that approach, we discard further alternatives once a 

sub-goal has been recognized. Limited backtracking was 

adopted in at least two of the early top-down designs: 

the Atlas Compiler of Brooker and Morris [18, 19], and 

TMG (the TransMoGrifier) of McClure [20]. The syntax 

specification used in TMG was later formalized and 

analyzed by Birman and Ullman [21, 22]. It appears in 

[23] as "Top-Down Parsing Language" (TDPL) and 

"Generalized TDPL" (GTDPL). TDPL was developed at 

around the same time most of the classic CFG parsing 

algorithms were invented, but at that time it was used 

only as a formal model for the study of certain top-down 

parsing algorithms. The speed of modern computers 

means that relatively inefficient approaches to parsing 

are now often practical. For example, Earley's algorithm 

[24] can parse the entire class of CFGs; while it is O 

(n3), even a simple implementation can parse in the low 

thousands of lines per second [25]. For many people, 

parsing is a solved problem: there are a wide variety of 

well understood algorithms, with a reasonable body 

 

THOUGH THE PARSING PROBLEM IS SUPPOSED 

TO BE SOLVED, COMPILER DESIGNERS STILL 

FACE SOME LIMITATIONS WHILE DESIGNING 

THE COMPILER USING EXISTING WIDELY 

TECHNIQUES:- 

 

1.  From the Perspective of Language Extensibility 

 

Using a parser generator to create a parser has an 

important advantage over a handwritten parser: the 

grammar provides a concise specification of the 

corresponding language. As a result, we generally 

expect it to be easier to modify the machine-generated 

parser than the handwritten one. However, LALR (1) 

grammars for the popular Yacc tool [26] and similar 

parser generators are fairly brittle in the face of change. 

A grammar writer can avoid the need for disambiguation 

by factoring such prefixes by hand, but this requires 

extra effort and obfuscates the language specification. 

 

2.  Many sensible syntactic constructs are inherently 

ambiguous 

When expressed in a CFG, commonly leading language 

designers to abandon syntactic formality and rely on 

informal metarules to solve these problems. The 

ubiquitous “ dangling ELSE”  problem is a classic 

example, traditionally requiring either an informal meta-

rule or severe expansion and obfuscation of the CFG. 

 

3. An additional problem common to both LR and 

LL  

Parser generators are the separation of lexing and 

parsing: 

This can make it unnecessarily hard to add new tokens 

to a grammar. 

 

4. Limited lookahead Capability 

As mentioned above LR (k) and LL (k) algorithms uses 

k symbols of lookahead in parsing an expression.     

Typically k is 2 for most of these algorithms because 

going further requires more resources and complicates 

the grammar.  

 

II. METHODS AND MATERIAL 

 

A. Related work 

 

Packrat parsing is a novel technique for implementing 

parsers in a lazy functional programming language. A 

packrat parser provides the power and flexibility of top-

down parsing with backtracking and unlimited 

lookahead, but nevertheless guarantees linear parse time. 

Any language defined by an LL(k) or LR(k) grammar 

can be recognized by a packrat parser, in addition to 

many languages that conventional linear-time algorithms 

do not support. This additional power simplifies the 

handling of common syntactic idioms. 

 

Parsing Expression Grammar (PEG) is a new way to 

specify syntax, by means of a top-down process with 

limited backtracking. It can be directly transcribed into a 

recursive-descent parser. The parser does not require a 

separate lexer, and backtracking removes the usual LL(1) 

constraint. This is convenient for many applications, but 

there are two problems: PEG is not well understood as a 

language specification tool, and backtracking may result 
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in exponential processing time. Excessive backtracking 

does not matter in small interactive applications where 

the input is short and performance not critical. But, the 

author had a feeling that the usual programming 

languages do not require much backtracking 

 

a.   Motivation 

 

The idea to choose this topic is to address the following 

problems arising while implementing packrat parsing. 

 

1.   Space Consumption 

 

Probably the most striking characteristic of a packrat 

parser is the fact that it literally squirrels away 

everything it has ever computed about the input text, 

including the entire input text itself. For this reason 

packrat parsing always has storage requirements equal to 

some possibly substantial constant multiple of the input 

size. In contrast, LL (k), LR (k), and simple 

backtracking parsers can be designed so that space 

consumption grows only with the maximum nesting 

depth of the syntactic constructs appearing in the input, 

which in practice is an often order of magnitude smaller 

than the total size of the text. Although LL (k) and LR (k) 

parsers for any nonregular language still have linear 

space requirements in the worst case, this “ average-

case”  difference can be important in practice. Even with 

such optimizations a packrat parser can consume many 

times more working storage than the size of the original 

input text  

 

Tabling everything consumes main memory at a high 

rate and so risks starting thrashing, thus dropping the 

program from DRAM speed to disk speed. While 

theoretician may say the performance is still linear, that 

will not prevent complaints from users. The fact that 

many languages nowadays(including Java and Mercury) 

include a garbage collector(which must scan the tables at 

least once in a while, but will not be able to recover 

memory from them) just makes this even worse For this 

reason there are some application areas in which packrat 

parsing is probably not the best choice. For example, for 

parsing XML streams, which have a fairly simple 

structure but often encode large amounts of relatively 

flat, machine-generated data, the power and flexibility of 

packrat parsing is not needed and its storage cost would 

not be justified.  

 

b. Objective & Scope of Study 

 

The main objective behind this research work is to 

reduce the space consumption required for memoization 

with guarantee of linear parse time. Another aim is to 

avoiding the mutual recursive function calls. The scope 

of study is limited to implementation of efficient parser 

for parsing expression grammar. The efficiency of this 

parser will be measured from two perspectives mainly 

reduction in storage requirement for memorization and 

avoiding the mutual recursive function calls of parser to 

improve the efficiency directly, it helps to expand the 

applicability of packrat parsing in broader areas. 

 

Although PEGs are a recent tool for describing 

grammars introduced by Ford in [1] with 

implementation of the packrat parser in Haskell 

programming language called peppy, their theory has 

solid foundations. Ford [2] showed how they can be 

reduced to TDPLs from the 1970s. The semantic 

predicates have also been successfully applied in the 

ANTLR LL (k) parser. 

 

In [3] Roman shows that primitive recursive-descent 

parser with limited backtracking and integrated lexing is 

a reasonable possibility for parsing Java 1.5 where 

performance is not too critical. Also in [4] he shows that 

PEG is not good as a language specification tool. The 

most basic property of a specification is that one can 

clearly see what it specifies. And this is, unfortunately, 

not true for PEG. Further with slight modification in C 

grammar it gives reasonable performance. 

 

And also in [5] he shows that he classical properties like 

FIRST and FOLLOW can be redefined for PEG and are 

simple to obtain even for a large grammar. One 

difference is that instead of letters are terminal 

expressions, which may mean sets of letters, or strings 

FIRST and FOLLOW are used to define conditions for 

choice and iteration that are analogous to the classical 

LL(1) conditions, although they have a different form 

and meaning. Checking these conditions produces useful 

information like the absence of reprocessing or language 

hiding. This helps to locate places that need further 

examination. Unfortunately, most results obtained here 

have the form of implications that cannot, in general, be 

reversed. The properties FIRST and FOLLOW are kind 

of upper bounds, and conditions using them are 

sufficient, but not necessary. This results in false 
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warnings. In particular, the lookahead operator "!" may 

trigger a whole avalanche of them. This paper addresses 

a need for proper handling of this operator as a future 

work. 

 

In [6] a new approach is proposed for implementing 

PEGs, based on a virtual parsing machine, which is 

more suitable for pattern matching. Each PEG has a 

corresponding program that is executed by the parsing 

machine, and new programs are dynamically created and 

composed. The virtual machine is embedded in a 

scripting language and used by a pattern matching tool. 

 

In [7] Robert grimm parsing technique which has been 

developed originally in the context of functional 

programming languages, practical for object-oriented 

languages. Furthermore, this parser generator supports 

simpler grammar specifications and more convenient 

error reporting, while also producing better performing 

parsers through aggressive optimizations. 

 

In [8] the addition of cut operators was proposed to 

parsing expression grammars (PEGs), on which packrat 

parsing is based, to overcome its disadvantage. The 

concept of cut operators, which was borrowed from 

Prolog [6], enables grammar writers to control 

backtracking. By manually inserting cut operators into a 

PEG grammar, an efficient packrat parser that can 

dynamically reclaim unnecessary space for memoization 

can be generated. To evaluate the effectiveness of cut 

operators, a packrat parser generator called Yapp was 

implemented that accepts cut operators in addition to 

ordinary PEG notations. The experimental evaluations 

showed that the packrat parsers generated using 

grammars with cut operators inserted can parse Java 

programs and subset XML files in mostly constant space, 

unlike conventional packrat parsers.  In [9] methods are 

proposed that achieve the same effect in some practical 

grammars without manually inserting cut operators. In 

these methods, a parser generator statically analyzes a 

PEG grammar to find the points at which the parser 

generator can insert cut operators without changing the 

meaning of the grammar and then inserts cut operators at 

these points. 

 

Paper [10] argues (a) packrat parsers can be trivially 

implemented using a combination of definite clause 

grammar rules and memoing, and that (b) packrat 

parsing may actually be significantly less efficient than 

plain recursive descent with backtracking, but (c) 

memoing the recognizers of just one or two 

nonterminals, selected in accordance with Amdahl’s law, 

can sometimes yield speedups. 

 

Warth [11] presents a modification to the memoization 

mechanism used by packrat parser implementations that 

makes it possible for them to support (even indirectly or 

mutually) left-recursive rules. While it is possible for a 

packrat parser with this modification to yield super-

linear parse times for some left-recursive grammars, 

experiments were carried out to show that this is not the 

case for typical uses of left recursion. 

 

Finally, in [15] Coq formalization of the theory of PEGs 

is described and, based on it, a formal development of 

TRX: a formally verified parser interpreter for PEGs. 

This allows writing a PEG, together with its semantic 

actions, in Coq and then to extract from it a parser with 

total correctness guarantees. That means that the parser 

will terminate on all inputs and produce parsing results 

correct with respect to the semantics of PEGs. 

Considering the importance of parsing, this result 

appears as a first step towards a general way to bring 

added quality and security to all kinds of software. 

 

B. Proposed Work 

 

Packrat Parsing is a variant of recursive decent parsing 

technique with memoization by saving intermediate 

parsing result as they are computed so that result will not 

be reevaluated. It is extremely useful as it allows the use 

of unlimited look ahead without compromising on the 

power and flexibility of backtracking. However, Packrat 

parsers need storage which is in the order of constant 

multiple of input size for memoization. This makes 

packrat parsers not suitable for parsing input streams 

which appears to be in simple format but have large 

amount of data.  

 

 In this project instead of translating productions into 

procedure calls with memoization, an attempt is made to 

eliminate the calls by using stack without using 

memoization for implementation of ordered choice 

operator in Parsing expression Grammar (PEG). The 

experimental results show the possibility of using this 

stack based algorithm to eliminate the need of storage 

for memoization to improve the performance of packrat 

parser in terms of storage space. 
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III. RESULTS AND DISCUSSION 
 

It is expected that the proposed approach improve the 

performance of packrat parser from two perspectives 

mainly reduction in storage requirement for 

memorization and avoiding the mutual recursive 

function calls of parser. 

 

IV. CONCLUSION 

 
Packrat parsers need storage which is in the order of 

constant multiple of input size for memoization. This 

makes packrat parsers not suitable for parsing input 

streams which appears to be in simple format but have 

large amount of data.  The future work will be 

translating productions into procedure calls with 

memoization, an attempt is made to eliminate the calls 

by using stack without using memoization for 

implementation of ordered choice operator in Parsing 

expression Grammar (PEG). The experimental results 

show the possibility of using this stack based algorithm 

to eliminate the need of storage for memoization to 

improve the performance of packrat parser in terms of 

storage space. 
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